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The structure of an axisymmetric and inviscid swirling flow around a vortex 
breakdown point is analysed. The model assumes that a free axisymmetric bubble 
surface is developed in the flow with a stagnation point at its nose. The classical 
Squire-Long equation for the stream function $(x, y )  (where y = r 2 / 2 )  is transformed 
into a free boundary problem for the solution of y(x, yk). The development of the flow 
is studied in three regions: the approaching flow ahead of the bubble, around the 
bubble nose and around the separated bubble surface. Asymptotic expansions are 
constructed to describe the flow ahead of and behind the stagnation point in terms of 
the radial distance from the vortex axis and from the bubble surface, respectively. In 
the intermediate region around the stagnation point, the flow is approximated by an 
asymptotic series of similarity terms that match the expansions in the other regions. The 
analysis results in two possible matching processes. Analytical expressions are given for 
the leading term of the intermediate expansion for each of these processes. The first 
solution describes a swirling flow around a constant-pressure bubble surface, over 
which the flow is stagnant. The second solution represents a swirling flow around a 
pressure-varying bubble surface, where the flow expands along the bubble nose. In 
both solutions, the bubble nose has a parabolic shape, and both exist only when H’ > 0 
(where H’ is the derivative at the vortex centre of the total head H with the stream 
function yk, and can be determined from the inlet conditions). This result is shown to 
be equivalent to Brown & Lopez’s (1990) criterion for vortex breakdown. Good 
agreement is found in the region around the stagnation point between the 
pressure-varying bubble solution and available experimental data for axisymmetric 
vortex breakdown. 

1. Introduction 
1.1. Review 

High-Reynolds-number swirling flows are characterized by abrupt changes and regions 
of flow reversal and instabilities known as the vortex breakdown phenomena. The 
continuing research toward understanding these phenomena has been strongly 
motivated by their significant harmful effects on slender aircraft configurations flying 
at high angles of attack. However, for confined swirling flows through pipes or in 
closed containers, it may have potential technological applications like flame 
stabilization in combustion chambers. Vortex breakdown phenomena can also occur 
in flows in hydrocyclon separators as well as in swirling jets behind nozzles, and are 
also common to the motion of atmospheric vortices such as tornados. Therefore, the 
ability to understand the complicated structures that develop as a consequence of 
vortex breakdown and to predict the flow conditions that lead to these phenomena is 
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essential for the future utilization of swirling flows in the design of advanced 
aerodynamic configurations, combustion chambers, nozzles, and other flow devices 
where swirl has a dominant influence. 

The vortex breakdown phenomena have been widely studied and several review 
papers on this subject have been presented, including the reports by Hall (1972), 
Leibovich (1978, 1984) and Escudier (1988). Although there has been extensive 
research, the fundamental nature of these phenomena remains largely unexplained. 

Experimental results from vortex flows around highly swept sharp-edged wings at 
high angles of attack and vortex flows in tubes show several distinct forms of vortex 
breakdown (Sarpkaya 1971, 1974; Faler & Leibovich 1977; Bruecker & Althaus 1992, 
1995). They range from various helical disturbances to a spiral type breakdown or a 
strong, nearly axisymmetric, bubble type. The various types of breakdown can develop 
in flows with the same Reynolds number, with only a small change in the swirl ratio 
(ratio of circumferential speed to axial speed) of the flow. The breakdown phenomenon 
is characterized by an abrupt change in the flow above a certain swirl ratio. A 
stagnation point suddenly emerges in the free swirling flow, followed by regions of flow 
reversals and turbulence behind it. The experimental results of Faler & Leibovich 
(1978), Uchida, Nakamura & Ohsawa (1985) and Bruecker & Althaus (1995) on 
axisymmetric bubble breakdown show that the axial flow along the vortex core 
centreline rapidly decelerates to stagnation as a linear function of the distance from the 
stagnation point. Also, regarding circumferential velocity profiles, the angular velocity 
along the axis decreases toward the breakdown point, and swirl strongly deviates from 
solid-body rotation at the stagnation point. 

Numerical simulations of vortex flows using the Navier-Stokes or the Euler 
equations have recently made some progress and describe flow fields that resemble 
vortex breakdown (Leibovich & Kribus 1990; Beran & Culick 1992; Spall, Gatski & 
Ash 1990; Spall & Gatski 1991 ; Brewer 1991 ; Lopez 1990, 1994). The various types 
of vortex breakdown can be simulated, depending on the initial disturbances, the 
upstream (or inlet) conditions and, specifically, the boundary conditions along the 
outer lateral boundaries of the computational domain. 

The theoretical analyses of the vortex breakdown phenomena have suggested three 
basic different classes of explanations : the critical-state concept, the analogy to 
boundary-layer separation, and hydrodynamic instabilities. The critical-state theory 
(Benjamin 1962) relates the characteristics of a swirling columnar flow to the ability of 
the flow to sustain standing, axisymmetric small-disturbance waves. Supercritical 
vortex flows have low swirl ratios and are unable to support such waves, while 
subcritical flows have high swirl ratios and are able to sustain standing waves. 
Benjamin (1962) described the axisymmetric breakdown in a rather simple model as a 
transition from an upstream supercritical flow to a downstream subcritical flow; 
however, the relevance of this model to the vortex breakdown is not yet clear. 
Leibovich & Kribus (1990) showed that small-amplitude axisymmetric standing waves 
tend to blow up near the critical state and stationary axisymmetric solitary waves are 
formed which may describe an axisymmetric bubble and can exist only in a 
supercritical flow. 

The analogy to flow separations (Hall 1972) is based on the failure of the quasi- 
cylindrical approximations to the Navier-Stokes equations to describe a swirling flow 
with large streamwise gradients. The topology of the flow near the breakdown point 
changes drastically and looks similar to the separation of a boundary layer over a rigid 
wall (Spall & Gatski 1991). Trigub (1985) analysed the singularity in the solution of the 
quasi-cylindrical equations and showed that the radial velocity tends to grow to infinity 



Axisymmetric swirling f low around a vortex breakdown point 81 

as the stagnation point is approached. Similar evidence was found in recent calculations 
by Beran & Culick (1992). However, Trigub’s (1985) analysis is limited to flows with 
relatively small swirl of the order of 1/Re:l2 (where Re, is the Reynolds number based 
on the viscous core radius), whereas in experiments the swirl is much larger. The failure 
of the quasi-cylindrical approximation is not yet fully understood. 

The stability analyses study the tendency of small disturbances imposed on a vortex 
flow to grow or decay in time and space. The analyses of Lessen, Singh & Paillet (1974) 
and Leibovich & Stewartson (1983) define several criteria for the stability of a vortex 
flow to general three-dimensional axisymmetric and non-axisymmetric perturbations. 
It is found that a columnar vortex with a large rotational core (the ‘Q-vortex’ model) 
is stable to axisymmetric perturbations when the swirl ratio is greater than 0.403, but 
it is unstable to non-axisymmetric helical perturbations when the swirl ratio is less than 
about 1.6. A review of vortex stability criteria is given in Leibovich (1984). It is 
important to note that the relation between vortex breakdown and vortex stability is 
yet unclear. As was pointed out by Leibovich (1984), breakdown can occur in a vortex 
flow with just a little sign of instability and a vortex flow can become unstable without 
any breakdown phenomena. 

Leibovich (1984) has proposed a theoretical scenario to explain the onset of 
breakdown in a vortex flow in a tube. It is suggested that several interacting 
mechanisms are involved : the axisymmetric, bubble-type breakdown phenomenon is 
associated with the development of large-amplitude axially symmetric waves in a basic 
supercritical vortex flow, which are equilibrated by energy transfer to non-axisymmetric 
instabilities of modest amplitude and are also affected by axial variations caused by 
pressure gradients along the vortex core. This hypothesis is based on the weakly 
nonlinear ‘trapped wave ’ theory of Randall & Leibovich (1 973) and recent solutions 
for the development in space and time of large-amplitude axially symmetric solitary 
waves on columnar vortices (Leibovich & Kribus 1990; Kribus & Leibovich 1994). 
However, the interaction among the various mechanisms remains a complicated open 
problem to study. Some support for this model may be found in the calculations by 
Beran & Culick (1992). However, the continuation method of the flow into the 
separation zone in Leibovich & Kribus (1990) raises some difficulties. It is not clear 
whether analytical continuation of the circulation and total head functions into the 
bubble zone is the preferred model to use in the inviscid framework. 

In another approach, Escudier & Keller (1983) and Keller, Egli & Exley (1985) 
described the axisymmetric breakdown as a two-stage transition around a semi-infinite 
stagnation zone of free boundaries. Their solution matches between a given inlet 
columnar flow condition and another outlet columnar flow solution that has the same 
flow force. However, this solution clearly is limited only to a certain swirl ratio of the 
inlet flow which is at a supercritical stage. This solution was not extended to other swirl 
ratios with a fixed vortex core radius. 

Several criteria have recently been proposed to predict the onset of breakdown in a 
vortex flow. Spall, Gatski & Grosch (1987) suggested a criterion for the breakdown of 
vortex flows in tubes in terms of the local Rossby number (the inverse of swirl ratio) 
of the flow, that is defined at the radial distance of maximum swirl velocity. Based on 
previous experimental, numerical and theoretical studies, they found that for any 
Reynolds number greater than 100, vortex breakdown occurs only when the local 
Rossby number of the upstream flow is less than a critical value - about 0.65. 

Brown & Lopez (1 990) analysed the Euler equations that describe an incompressible 
and inviscid axisymmetric swirling flow and proposed a theoretical criterion for the 
axisymmetric breakdown that is based on the generation of negative azimuthal 



82 Z .  Rusak 

vorticity on some stream surfaces in the flow. It relates the tangents of the helix angles 
a. and Po for the velocity and vorticity vectors at an upstream station. A stagnation 
point will appear in the flow only when the condition a. > P,, is satisfied. This idea 
showed good agreement with numerical results of vortex breakdown in tubes. 

Brown & Lopez (1990) also suggested a positive feedback mechanism between the 
divergence of the stream function surfaces and the development of negative azimuthal 
vorticity in the vortex core for the generation of a separation zone in a swirling flow. 
This mechanism shows good agreement with numerical simulations and with the 
experimental results of Bruecker & Althaus (1995). 

Lundgren & Ashurst (1989) and Marshall (1991) studied area-varying waves on 
curved vortex tubes by using a Polhausen type of integral momentum approach. The 
vortex breakdown is described as a ‘shock jump’ in the vortex flow across which the 
core radius and the circulation of the vortex can be discontinuous. Theoretical criteria 
for both stationary axisymmetric and helical breakdowns were presented in terms of 
the local swirl ratio of the flow. 

Recently, Goldshtik & Hussain (1992) have presented the idea of the development 
of internal stagnation zones in inviscid vortical flows as a basic model to explain the 
vortex breakdown phenomenon. They have analysed the various possibilities of the 
continuation of a vortical incompressible flow into internal separation regions that 
may develop in a swirling flow. Formal analytical continuation may lead to swirl 
reversals that are physically unlikely to occur. The inviscid-limit solution of the 
axisymmetric Navier-Stokes equations suggests an internal flow with no swirl and a 
linear change of the azimuthal vorticity with the radius. Such a solution may lead to 
matching problems with the flow outside the separation region. It has also been shown 
that separation zones will appear in axisymmetric swirling flows above a critical value 
of the swirl ratio due to the spatial instability of the flow to azimuthal vorticity 
disturbances. The model of a stagnation zone describes the flow inside the bubble with 
no swirl and no azimuthal vorticity. It is also a specific inviscid-limit solution and has 
been suggested by Goldshtik & Hussain (1992) as the preferred model to describe the 
axisymmetric bubble-type breakdown. Observations (Uchida et al. 1985) show that 
within the bubble there is a very slow motion compared to the outer flow. It should also 
be mentioned that the theory of Escudier & Keller (1983) described the axisymmetric 
breakdown as a transition around a stagnation zone of free boundaries. However, the 
existence, uniqueness and stability of stagnation zones in vortical axisymmetric flows 
has not been studied yet and it still remains an open problem to investigate. 

The review of the theoretical and numerical studies on vortex breakdown shows that 
this phenomenon remains largely unexplained, specifically with regard to the details of 
the swirling flow around the stagnation point, the shape of the separation zones and 
the conditions for its existence. 

1.2. Model assumptions 

This paper concentrates on the nearly axisymmetric vortex breakdown phenomenon 
and the flow structure near the nose of the bubble. Experiments on swirling flows in 
a pipe (Sarpkaya 1971, 1974, 1995; Faler & Leibovich 1977, 1978; Uchida et al. 1985; 
Escudier 1984; Bruecker & Althaus 1992, 1995; Bruecker 1995) provide insight into the 
structure and stability of the nearly axisymmetric vortex breakdown phenomenon. In 
all of the cases the inlet flow to the pipe, the flow near the inlet decelerating to 
stagnation and expanding around the nose of the bubble, and most of the bubble 
envelope, all show a high degree of axial symmetry (Faler & Leibovich 1977). Non- 
axisymmetric perturbations develop mostly near the rear end of the bubble, inside the 



Axisyrnmetric swirling $ow around a vortex breakdown point 83 

bubble and downstream in the wake of the bubble and are mostly confined to those 
regions. The flow inside the recirculation bubble zone is very complicated. Some 
experiments show that there is an inclined toroidal vortex ring near the downstream 
end of the recirculation bubble, which gyrates at a regular frequency about the axis of 
the tube and is accompanied by the loss of axisymmetry near the rear end of the bubble 
(Sarpkaya 1971, 1974, 199.5; Bruecker & Althaus 1992; Bruecker 1995). Other 
experiments, however (Faler & Leibovich 1978; Uchida et al. 1985), show the 
generation of two vortex rings inside the bubble which preserves the axisymmetry of 
the flow. It can also be observed (see figure 8c  from Sarpkaya 199.5; figure 4 from 
Bruecker & Althaus 1992 and figures 3, 4 and 6b from Faler & Leibovich 1977) that 
even downstream of the bubble nose but outside the bubble and its wake, the flow 
preserves a degree of axisymmetry. Also, inside the bubble the flow is relatively slow 
and so the transfer of momentum and kinetic energy from the inside of the bubble to 
its surroundings is relatively small. The recent experiments of Bruecker & Althaus 
(1995) are the only ones known that describe the evolution in time of the breakdown. 
They show that the bubble evolves in time with a strong axisymmetry (see figures 1 and 
5 in Bruecker & Althaus 199.5). They also show that it is only after the axisymmetric 
bubble has been formed that asymmetric disturbances in the wake of the bubble may 
slightly change the flow structure inside the bubble (see figure 5 in Bruecker & Althaus 
1995) but a high degree of symmetry is kept. Bruecker & Althaus (1995) also indicated 
that Sarpkaya (1971, 1974) had observed a more asymmetric bubble-type breakdown 
than those they found. 

Therefore, it may be concluded that the non-axisymmetric perturbations observed 
develop from a base axisymmetric flow that contains a separation zone and to the 
leading order the bubble and the flow around the bubble are axisymmetric. This is also 
the reason why most of the theoretical and numerical approaches to the nearly 
axisymmetric vortex breakdown phenomenon have concentrated on studying the 
axisymmetric case (theoretical approaches: Benjamin 1962; Hall 1972; Randall & 
Leibovich 1973; Keller & Egli 1985; Escudier 1988; Leibovich & Kribus 1990; Brown 
& Lopez 1990; Berger & Erlebacher 199.5; numerical approaches: Grabowski & Berger 
1975; Salas & Kuruvila 1989; Lopez 1990, 1994; Beran & Culick 1992; Beran 1994). 
The numerical simulations based on the three-dimensional Navier-Stokes equations of 
Spall et al. (1990), Spall & Gatski (1991), and Breuer (1991) show certain situations 
where a nearly axisymmetric bubble may develop in the swirling flow. As was 
mentioned by Hall (1972) and Berger & Erlebacher (1995), although the various 
axisymmetric theories and simulations postulated different physical mechanisms of the 
vortex breakdown, they all lead to similar criteria for breakdown that shows agreement 
with the experiments. For example, the numerical simulations of Lopez (1990) of the 
axisymmetric case show good agreement with the flow visualization of Escudier (1984). 

Therefore, the axisymmetric framework may serve as a reasonable base frame for the 
analysis of the nearly axisymmetric vortex breakdown phenomenon. This frame may 
give us insight into the mechanisms leading to the creation of the bubble, into the 
conditions for its appearance and into the flow structure ahead of it and around its 
nose. It is clear that for a complete understanding of the phenomenon we will also have 
to study in the future the stability of the axisymmetric bubble to non-axisymmetric 
perturbations and find the conditions for the bifurcation of asymmetric waves as well 
as the interaction of those waves in the wake of the bubble with the bubble. 

As for the viscous effects on the process of vortex breakdown, we can see from the 
experiments that the nearly axisymmetric bubble develops under certain conditions at 
about one diameter of the pipe from the inlet. The characteristic time for a particle near 
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the centreline to travel from the inlet to the bubble nose is t = D / U  ( D  is the pipe 
diameter and U is the averaged axial speed along the centreline). On the other hand the 
diffusion time over this distance is t ,  = D2/u,  and for water and air where u, the 
viscosity, is small (where the Reynolds number is above 100) it is found that t 4 t ,  so 
that to the leading-order diffusion effects are small and the flow decelerating to 
stagnation and expanding around the bubble nose may be considered as inviscid. We 
recognize, however, that viscous effects become more important on the rear end of the 
bubble, within the bubble and in its wake, and may create some unsteadiness and 
determine the bubble nose position, but the bubble nose shape and the flow ahead of 
it are only slightly affected by the small viscosity. In fact, Bruecker (1995) and 
Bruecker & Althaus (1995) indicate that the axisymmetric and inviscid positive 
feedback mechanism proposed by Brown & Lopez (1992) reflects the experimental 
evidence of the development of a free stagnation point in the swirling flow and the 
nearly axisymmetric bubble behind it. Also, the criterion developed by Spa11 et al. 
(1987) shows no dependence on the Reynolds number (Re) for laminar swirling flows 
when Re > 100. 

Finally, the results of Faler & Leibovich (1978), Uchida et al. (1985) and Bruecker 
& Althaus (1995) also show that the bubble shape is parabolic near the bubble nose. 
In fact, Bruecker & Althaus (1995) conducted a special experiment on swirling flow 
around a hollow hemispherical cap and claimed a strong resemblance of this flow with 
that around the bubble. The nose of the cap is parabolically expanding and behaves 
similarly to the bubble nose. The present results confirm this point. 

This paper presents a theoretical analysis of the structure of an axisymmetric and 
inviscid swirling flow in the region around a vortex breakdown point. The model 
assumes that a free axisymmetric bubble surface is developed in the flow with a 
stagnation point at its nose. The flow development is studied in three regions: the 
approaching flow ahead of the bubble; around the bubble nose; and around the 
separated bubble surface (see $2). Asymptotic expansions are constructed in $ 3 to 
describe the flow ahead of and behind the stagnation point in terms of the radial 
distance from the vortex axis and from the bubble surface respectively. In the 
intermediate region around the stagnation point (§4), the flow is approximated by an 
asymptotic series of similarity terms that match the expansions in the other regions. As 
a result of this structure of solution the flow around the bubble nose can be analysed 
with no need to specify the flow inside the bubble. The analysis in $4 results in two 
possible matching processes and analytical expressions are given for the leading 
similarity term of the intermediate expansion in each of these processes. The first 
solution describes a swirling flow around a constant-pressure bubble surface, over 
which the flow is stagnant. The second solution represents a swirling flow around a 
pressure-varying bubble surface, where the flow expands along the bubble nose. In 
both solutions, the bubble nose has a parabolic shape and both exist only when H‘ > 0 
(where H’ is the derivative at the vortex centre of the total head H with the stream 
function $, and can be determined from the inlet flow conditions). This result is shown 
to be equivalent to Brown & Lopez’s (1990) criterion for vortex breakdown. A general 
non-similarity solution near the bubble nose is given in 9 5, where the similarity 
solutions are special cases of this solution. Good agreement is found in the region 
around the stagnation point between the pressure-varying bubble solution and 
available experimental data of Faler & Leibovich (1978) and Uchida et al. (1985) for 
axisymmetric vortex breakdown (see 9 6 ) .  

It should be clarified that the criterion presented here depends upon the existence of 
the similarity solution and so lacks generality. However, since the axisymmetric 
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breakdown is dominated by the bubble shape (as is shown in the experiments of 
Bruecker & Althaus 1995), it is expected that the local flow near the bubble nose has 
a certain distinguished symmetry. The comparison in $6 shows that one of the special 
similarity solutions agrees nicely with the experimental data and that the structure of 
the flow near the bubble nose probably has the expected symmetry. 

2. Basic problem and equations 

(x ,  r)-space. The flow is described by the Euler equations; 
An incompressible and inviscid steady axisymmetric swirling flow is considered in an 

1 wx+u,+u/r = 0, 
uu, + wux - v z / r  = -p,/p, 
uu, + wv, + uv/r  = 0, [ 
uw, + wwx = -p,/p. J 

Here u, u,  w are the radial, circumferential, and axial components of the velocity vector, 
andp and p = constant are the pressure and density of the flow, respectively. Using the 
definition of a stream function $, where 

it can be shown (Batchelor 1967) that 

rv = K($), p/p++(u2+uZ+wW2) = H($). ( 2  b) 
Here, K and Hare the circulation and total head functions. The stream function $(x, r )  
is determined by the Squire-Long equation (Squire 1956 and Long 1953 (also known 
as Bragg-Hawthorne 1950 equation)) : 

where Z = i K 2 .  Also, $(x, 0) = 0 for every x. 
We assume that a free axisymmetric bubble surface described by the equation 

r = rb(x) with rb(0) = 0, is developed in the swirling flow, with a stagnation point at its 
nose, x = 0 (see figure 1). The separated bubble surface is also described by a 
I++(x, r = rb(x)) = 0 surface, where the bubble radius rb(x) needs to be solved. We have 
here a free boundary problem and we are specifically interested in describing the flow 
around the bubble surface where + > 0 as well as the local behaviour of $(x, r )  and 
rb(x) near x = 0. 

Owing to the complicated geometry in the (x ,  r)-space, the present analysis also uses 
the transformation of variables $(x, r )  to y = r 2 / 2  = y ( x ,  $). In the (x, $)-plane, the 
centreline ahead of x = 0 and the bubble surface for x > 0 occur along the $ = 0 axis 
(see figure 2). The flow around the bubble is described in the $ > 0 plane. Using a 
standard transformation analysis it can be shown from (2) that the function y ( x ,  $) is 
related to the velocity components by 

and may be described by the equation (see also Keller & Egli 1985): 

Y$h+h(Y + hJ3 + i Yxx Y ;  -Yx Y$hYZ$ + vv; H'(gI.1- b$ I"$> = 0. (3 b) 
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X x =xo x = o  

FIGURE 1. Axisymmetric vortex breakdown problem. 

t 
w 

X x =xo x = o  

FIGURE 2. Problem formulation in the (x, $)-plane. 

As is shown later, this transformation helps us to solve the flow around the bubble 
nose where $ 2 0 without any need to specify or analyse the nature of the flow inside 
the bubble (where $ < 0). 

In order to study the swirling flow around the bubble nose where $ 2  0, the flow 
field is approximated by asymptotic expansions in the limit 9 + O+ in three regions : I 
the approaching flow ahead of the bubble; I1 around the bubble nose; and I11 around 
the bubble surface (see figures 1 and 2). In regions I and 111, the coordinate x is fixed 
as $+Of (see 93). In the intermediate region 11, a similarity solution that matches the 
expansions in the other regions is sought (94). There, [ = x/$.” is fixed as $ + O+ (the 
similarity power k is to be determined). In 95, we discuss another possible non- 
similarity solution around the stagnation point that is based on the specific assumption 
of analytical continuation of the functions H($) and K($) inside the bubble, where 
$ < 0. In $6, we compare the various solutions found to available experimental data 
on the axisymmetric vortex breakdown. 

3. Analysis of regions I and I11 
3.1. Approaching pow 

In the approaching flow region ahead of the bubble (x < 0), the asymptotic expansions 
of the velocity components and pressure may be given in the limit r + 0 with x fixed in 
the form 

u = a,(x)r+a3(x)r3+ ..., 1 
I u = b, (x)r+b, (x)r3+ ..., 

w = co(x) + c,(x) r2 + . . . , 
+ . . . . I P / P  = P O ( 4  + P , ( 4  

(4) 
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The expansions omit a linear term in r in w and p and a quadratic term in r in u and 
v owing to viscous considerations or regularity conditions along the x-axis. Since x = 0 
is the breakdown (stagnation) point, we have c,(O) = 0. 

It is also assumed that at an inlet station x, < 0, the functions co(xo), c2(xo),  b,(x,), 
and po(xo) are given. From the basic system of equations (l), a sequence of relations 
is found: 

(5 )  i 
ao(x) = -+c;I(x), 

bO(4 = k,  C O ( 4 ,  k ,  = bO(~O)/~O(~O)~ 

P O ( 4  +fc:(x> = PO(X0)  +fCXX,> = P s t o / P ,  
1 /f g , ( x )  + 2k: co(x) + 2c2(x) = constant = H’. 

It is seen that the functions a,(x), b,(x) and p,(x) and can be determined by the three 
constant parameters k,, psto,  and H’ and the change of the axial velocity co(x) along the 
x-axis. It is also interesting to see that the ratio of the angular velocity b,(x) to the axial 
velocity co(x) is kept constant along the centreline. As x+O- ,  since c,(x)+O, we also 
find that b,(x) + 0, which indicates the deviation of the swirl from solid-body rotation 
as the stagnation point is approached. 

From (2a)  and (4), we get as r+O 

$(x, r )  = fc,(x) r2 + ic,(x) r4 + . . . , (6)  

so that as $+O+, we find 

Therefore, as $ + 0’ : 
K($) = rv = 2k,$+ ..., 

H($) = P, to /P  + H’$ + * * ’ 

From (5) ,  the value of H‘ can be determined in terms of the given state of the flow 
at the centreline at station x = x, < 0 ahead of the stagnation point: 

H’ = fc5(xo) + 2 - b%xo) + 2c2(x,). 
C,(X,)  

(9) 

Equation (9) shows that H’ depends on the axial velocity at the centre at x = x,, co(xo); 
the curvature of the jet/wake-like shape of the axial velocity near the centre, c2(xo); 
the angular speed of the swirling flow, b,(x,) ; and also on the second derivative of the 
axial velocity along the centreline, c;l(x,). It can also be shown from (4) that the 
vorticity components (CT, 7, <) in the radial, circumferential and axial directions, 
respectively, are given as r + 0 by 

CT = -u, = - b i ( x ) r + . . . ,  1 

Therefore, H’ may also be given by 
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H' may be determined by the vorticity components at the centre at x, < 0, as well as 
the axial and angular velocities at x,. It is also interesting to see that as x+O-, 
c,(x) ++ 0, and 7 = - rH' + . . . , i.e. the azimuthal vorticity is negative near the stagnation 
point, x = 0, only when H' > 0. 

3.2. Flow around the separated bubble 
In the third region (x > 0) around the separated bubble surface r = rb(x), the 
asymptotic expansion for the function y(x, $) may be given in the limit $+O+ (or 
r + rb(x)) with x fixed by the general form 

Y(X, $1 = do@) + dl(X) II." + d,(x) $b + . . ., (12) 

where 0 < a < /? and do(x) = r;(x)/2 > 0, and rb(x) is as yet unknown. Then, 
y@ = d,(x) ap-' + . . . . When 0 < a < 1 ,  yIL + co as $ ++ O+ so the velocity components 
u and w vanish on the bubble surface. When a = 1, u and w become 

u = dk(~)/[(2d,(x))'/~ dl(x)] and w = l/dl(x) 

along the bubble surface. When a > 1 both u and w tend to infinity as $+O+ which 
results in a non-physical situation. Therefore, a must satisfy 0 < a < 1.  

The substitution of (8) and (12) into (3 b) results in several cases relating the leading 
powers of $: 

(i) When 0 < a < 1/2 or 1/2 < a < 1, we find that either dl(x) = 0 or do(x) EE 0. 
Both situations contradict the existence of a separated bubble at x = 0 and a flow 
developing around it. 

(ii) a = 1/2. Then both u and w vanish as $+O+ (or r+rb(x)) and the bubble 
surface in this case is a stagnation surface along which the pressure is constant and 
equals psto. The functions d,(x) and dl(x) are related in the case a = 1/2 by 

~ O ( X )  + i (dh(~) )~  -$&(x) d;(x) H' = 0. 

(iii) a = 1 and /3 = 2. In this case, u and w change along the bubble surface as 
functions of x, as described above, and, therefore, the pressure also varies along the 
bubble surface. Here, functions d,,(x), d,(x) and d,(x) are related by 

2d2(x) (d,(x) +;(d;(~))') +$d;(x) d;(x) -d1(x) d;(x) d;(x) + H'd,(x) d;(x)  = 0. (13 b) 
We find that the general asymptotic expansion (12) constitutes only two possible 

consistent boundary conditions along the ($ = 0, x > 0)-axis for solving equation (3b). 
One boundary condition may describe a separated stagnation surface (when a = 1/2) 
and the other may describe a separated pressure-varying surface (when a = 1). In this 
way the local problem for solving y(x, ~) around x = 0 and $ 2  0, that consists of 
(3b), (7) and (12) (with either a = 1/2 or l), is well-defined and there is no need to 
specify or analyse the nature of the flow inside the bubble for studying the flow around 
the bubble. We look now for local solutions around the stagnation point x = 0. 

4. Flow around the stagnation point - similarity solution 

expansion for the function y may be given in the limit $ + Of and x --f 0 with 
fixed in the form 

where k and m are similitude exponents (k  > 0, m > 0) and f> 0 is the similarity 

In the intermediate region IT, around the bubble nose (x - 0), the asymptotic 
= x/$'" 

y = $."fTO+ ..., (14) 
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y = d&X) + d,(x) y"+ . . . 
* 

X 
c -*+m c-*-- 0 

FIGURE 3. Similarity lines in the (x, $)-plane. 
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function. Expansion (14) must match the leading terms of the expansion (7) of the 
approaching flow as [+- GO (x < 0, $+ O'), and those of the expansion (12) of the 
flow around the bubble as [++ GO (x > 0, $+O+) (see figure 3). 

The substitution of (14) into (3 b) and the use of (8) results in the following equation: 

B+ 1Cr3"-'k; D + . . . = 0. (15) $am-aA + $3rn-ak-a 

Here the terms A ,  B, C and D consist of complicated combinations of f ,  j&. As 
$+O+, the last term in (15)  is always smaller than the other terms and therefore is 
neglected. This means that the extended circulation function I($) may be neglected 
near the stagnation point. Equation ( 1 5 )  suggests six possible matching processes 
relating the leading powers of $: 

(a) m = 1/2,  

(b) m = 1/2,  

(c) m = 1/2,  
( d )  m = 2k, 

(e) m = 2 k ,  k > 1 / 4  where A+B=O, 

cf> m = 1-2k, 

Each of these equations is a complicated nonlinear ordinary differential equation for 
the solution offlc), and we now study each in turn. 

k = 1/4 where A+ B+ H'C = 0, 

k < 1/4 where A+H'C = 0, 

k > 1/4 where B = 0, 

k < 1/4 where C = 0, 

k $; 1/4 where B+H'C = 0. 

4.1. (a) m = 1/2, k =  1/4 
This may be the richest case. Here the functionflc) is described by the equation 

( f 2  + ; t m g + ; e f f f - 2 f  2-2( f f )2  ( f - f t f f )+H' f ( f - ;c .LJ3  = 0. (16) 

f- ba(-[)"+b,,(-LJD"l+ ... (a> a,) (17) 

(18)  

f ~ b , ( - Q - ~ + . . .  as  GO. (19) 

f -  b,(a+balf;al+ ... (a > a,) (20) 

The approximation off as g+ - GO by the asymptotic series 

results from (14) for x < 0 and $ --f 0' in 
= +iia-a14b a( - x)" + $1/2-a1/4bal( - x)"1+ . . . . 

= -6. So, Matching expansion ( 1 8 )  with (7) gives a = -2  and 

The approximation o f f l a  as t++ GO by the asymptotic series 
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(0 0 < 
FIGURE 4. The similarity functionf(5) for the case m = 1/2, k = 1/4. 

results from (14) for x > 0 and y+ + 0’ in 

y = y+1iz-a’4ba xa + . . . . (21) 

f - b a t 2 +  ... as [++a. (22) 

Matching expansion (21) with (12) gives a = 2, do(x) - b,  x2  + . . . and 

The solution of (16) must therefore satisfy expansions (19) and (22). 
On the other hand, it can be shown that bothf= 1/(H’t2) andf= b u t 2  are exact 

solutions of (16). Therefore, the continuous solution of (16) that also satisfies 
expansions (19) and (22) is given by (see figure 4) 

where to = -(buH‘)-1’4.  However, this solution does not describe a continuous 
physical flow around the separated bubble. 

4.2. (b)  m = 1/2, k < 1/4 
In this case, the functionf([) is described by the equation 

-if+ k2t& + k2f[2fz + H’(i f -  kt&)3 = 0. (24) 

Approximating f as [ + - co by the asymptotic series (17) results, after matching (14) 
with (7), in u = - 1/(2k) and = - 3/(2k). So, 

f -  6a(-Q-1/(zk)+ ... as [+-a. (25) 

Approximating f as [ + + co by the asymptotic series (20) results, after matching (14) 
with (12), in a = 1/(2k) and do(x) - b,(x)1i(2k)+ .. . . So, 

f -  b , [ 1 / ( 2 k ) + . . .  as [++a. (26) 

Solution of (24) must therefore satisfy expansions (25) and (26). Let 

F ~ i f - k g f 5 ,  

k t F  = H‘F3-$F. 
then (24) takes the form 

Equation (28) can be integrated to find 

F = & [2(H’ - C[k)]-1’2, 
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where C is constant. After integration, we get from (27) 

It is clear that solution (30) satisfies (25) if and only if b, = 0 but this means that no 
bubble is separated at x = 0, in contrast to the basic assumptions of the analysis. 

4.3. ( c )  m = 1/2, k > 1/4 
In this case, the functionf(6) is described by the equation 

f " f~- ( fS)2( (3-4k) f -4k( l  - k ) f f , )  = 0. (31) 

An analysis similar to that described for cases (a) and (b) shows that solution of (31) 
must satisfy expansions (25) and (26) to match the similarity solution (14) with 
expansions (7) and (12) as 6 --f - 00 and f + + 00, respectively. The substitution of (25) 
in (31) gives to the leading order, 0([-2-3/(2k)), a linear equation for solving k ,  
2k- 1 = 0. Therefore, a solution of (31 )  that satisfies (25) can be found only when 
k = 1/2 = m. For k = 1/2, (31 )  takes the form 

(32) 

It can be seen that solution of (32) can be given byf= C,fi[) ,  withfiO) = 1 .  Lets =T 
and t = [A be the phase-plane variables. Equation (32) is equivalent to the system 

f " f  - (f,>"f- ff() = 0. 

t(s-t) d6 - ds I = -  - -- 
d t  _- 
ds s2 ' f t '  

From(25),asf+-co,wefindthats--fO+andt=-s+ .... From(26),asf++co,we 
find that s+00 and t = s+ ... . Also, as f + O ,  we find that s =no) = 1 and t = 0 
(provided thatA(0) does not tend to infinity). It can be verified that the exact solution 
of (33a) that satisfies these three conditions is (see figure 5a) 

s3-s 
t(s) = - 

s2+1' 

The substitution of (34) in (33 b) gives after integration 

s2-1 
Cf=- ,  

S 

where C is a constant of integration. Since f > 0 for every f ,  

f +  ( f 2  + 4 / c 2 y 2  
2 X5) = c, c 

From (14) and (36), we find that as [++a ( x  > 0, @ + O + )  

(34) 

(35) 

we get (see figure 5 b) 

(36) 

The matching of (37) and (12) shows that for the case m = k = 1/2 we have a = 1 ,  
/3 = 2, d,(x) = C, Cx ,  dl(x) = C J C x ,  d2(x) = - C J ( C X ) ~ .  Therefore, (13b) should be 
satisfied. We find that C,  = (2/H')'/', and solution exists only if H' > 0. 
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FIGURE 5. (a) The phase-plane solution t (s)  and (b)  the similarity functionflc), for the case 

m = 1 / 2 , k = 1 / 2 .  

From (14) and (36) and with 6 = x/$liZ, we find that as x + 0 and $ + 0+, 

y = ;(2/H’)”2 C[X + (2 + 4$/C2)1/2] + . . . (38) 

$ = ;H’y(y-(2/H’)1/2C~)+ ..., y = r 2 / 2 .  (39) 

or as (x, y )  + 0 and $ 2  0 
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w - H‘/2[Rcx + r2-  rz(x)]  

v - k, Hr‘14 

v - k, H‘Rc r (-x)/2 
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The local solution (39) shows that the bubble separated at x = 0 has the local shape of 
a paraboloid as x + O+ : 

(40) 

with a radius of curvature R, = (2/H’)lI2C. The constant C represents a scale 
parameter related to the radius of curvature of the bubble nose and cannot be 
determined from the local analysis. This local solution describes a swirling flow around 
a pressure-varying bubble (see figure 6). As x + 0-, 

rb(x) = [2(2/H’)’/’Cx]’/’ + . . . 

w = (@’ )112C( -x )+ iH’r2+ . . . ,  v = (+H’)’ lzkk,C(-x)r+ ... . (41) 

The solution describes a wake-like deceleration of the axial velocity to stagnation 
which is a linear function of the distance from the stagnation point, and a decay of the 
solid-body rotation in the swirl component as the stagnation point is approached. At 
x = 0 (stagnation point station) 

w = +H’r2+ ..., v = +kk,H’r3+ ... . (42) 

The axial velocity keeps its wake-like shape with a specific curvature H’/2 ,  but the 
circumferential velocity changes from solid-body rotation to a much slower swirl that 
is changing as the cubic power of the radial distance from the centreline. Around the 
bubble surface r = rb(x) given by (40) the velocity components are 

(43) 

The axial flow accelerates (from stagnation) along the bubble paraboloid surface as a 
linear function of the distance from the stagnation point. Swirl vanishes on the bubble 
surface but increases linearly as the axial or radial distances from the bubble are 
increased. 

4.4. ( d )  m = 2k, k < 1/4 
In this case, the functionJTE) is described by the equation 

1H’ 112 w = (% ) Cx +iH’(r2 - rE(x)) + . . ., v = 2(+H’)lI2 k ,  C(r - rb(x)) x + . . . . 

2 f 4 &  = 0 .  (44) 

The solution of (44) is given by f = b a t 2  and then y = x 2 +  ... . However this solution 
does not satisfy the expansion (7) for the approaching flow. 
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In this case, the function f(' 

2 k ( f  + i'"f)& + ( 1  

Z .  Rusak 

4.5. (e)  rn = 2k, k > 1/4 
is described by the equation 

The approximation of fit) as '+- co by the asymptotic series (17) results, from 
matching with (7), in @ = 2- l /k and a, = 2 -2/k  and 

(46) 

The approximation offit) as '-t co by the asymptotic series (20) results from (14) in 

(47 4 
Matching expansion (47) with (12) gives a = 2, a, = 2-a /k  (where 01 = 1/2 or l ) ,  
d&) - b,x2+ ... and 

When a = 1/2, we find a, = 2 - 1/(2k). Substituting (47) into (45) results to the leading 
order, 0('4-11(2k)), in b, = 0 or b, = 1/2 or b,, = 0. All of these contradict the 
assumption of a separated bubble at x = 0. Therefore we may only have a = 1 and then 
a, = 2- l / k  and 

We look for a solution of (45) that satisfies conditions (46) and (48). Let s = f / ' 2  and 
t =&/' be the phase-plane variables, then equation (45) is equivalent to the system 

f N b,( - ' ) 2 - 1 i k  + 6al( - ' ) 2 - 2 i k  + . . . as 6-t - co. 

y = $2k-kaba xa + $2k-kalbal xa, + . . . . 

f -  b,f;2+b,lf[a1+... as t-tco. (47 b) 

f-b,'2+b,l'2-1ik+... as [+a. (48) 

. (49) 
dt t 2 ( ~ - ( 1 - k ) t / 2 ) + 2 ( 1 - 2 k ) s 2 - ( l - 3 k ) t s  d' - ds 

' 6 t-2s 
(t-2s)-+l= 

ds 2ks(s+$) 

From (46), as [+- co, we find that s- t  0 and t = (2- l / k ) s +  ... . From (48), as 
'++a, we find that s = b, and t = 2b,. Also, as [ + O & ,  we find that s- t  co and 
t = f Csli2 + . . . . It may also be shown from (48) that as [ -t 00, dt/ds = 2 - 1 /k and 

t = 2b,+a,(s-b,)+ ... as s-tb,. (50) 

The substitution of (50) into (49) results to the leading order, O(s-b,), in a special 
similarity power k = 1/2 and so rn = 1 and a = a, = 0. This gives that as '+- 00, 

f -  b,+0((-[)-2) and from (7) and (14) we get co(x) = l / b ,  as x+O- and $+O+. 
This means, however, that the axial velocity component is constant near x = 0 and 
cannot reach stagnation at x = 0 unless b, + 00, which does not lead to a relevant 
solution in this case. 

4.6. (f) rn = 1 -2k, k + 1/4 
In this case, the functionfit) is described by the equation 

Approximating fit) as '+- co by the asymptotic series (17) results, after matching 
(14) with (7) ,  in a = -2 and al = -2- l / k  and 

f - b,(-')-2+6al(-')-2-1'k+... as '+-a. (52) 

The substitution of (52) into (51) shows to the leading order, 0(EPE), that 6, = l / H ' .  
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Approximating A[)  as f;+ + 00 by the asymptotic series (20) results, from matching 
(14) with (12), in a = l / k - 2  and 

f - b, f ; 1 1 k - 2 +  ... as f ;++00. (53) 

We look for a solution of ( 5 1 )  that satisfies conditions (52) and (53). Let s = t2fand 
t = t3& be the phase-plane variables. Equation ( 5 1 )  is equivalent to the system 

(54) 
df; ds 

(t+2s)--3t d t  = - ( 2t2 ( s-- k( l  2m2 - k )  t)-2mH’s(s-;t)”), z -a .  - 
ds S2 

From (52), as [+- 00, we find that s = 1/H’ and t = -2/H’. From (53) as f ;++  00, 

we find that s++ 00 and t = (m/k)s+ ... . Also, as [ + O + ,  we find that 
t = &Cs3l2+ ... . It may also be shown from (52) that as f ;+-cg,  

dt/ds = iil = - 2 - l / k  and 

t = - 2 / H ’ - ( 2 + l / k ) ( ~ - l / H ’ ) + . . .  as s+(l/H‘)-.  ( 5 5 )  
The substitution of (55)  into (54) results to the leading order, O(s- l /H’ ) ,  in a specific 
equation for solving k :  

The solution of (56) gives k = 1/4 which is excluded in this case, and k = 1/3 for which 
m = 1/3 and 

HereA[) is described by the equation (using (51) )  

12k2-7k+ 1 = 0. (56)  

y = I p 3 f T . 5 )  + ...) f ;  = x / p / 3 .  (57) 

(58)  Y&[ - 2 f g f -  tf[) + Km-- f;&I3 = 0 

or by the equivalent system (using (54)) 

( 5 9 ~  b) 
d[ - ds -- dt 

( t  + 2s) -- 3t = [2t2(s- t )  - ~ / ~ H ’ s ( s -  t ) 3 ] / ~ 2 ,  - 
ds f; t+2s’ 

with the following conditions : 

I t = -2/H’-5(~-1/H’)+. . .  as s+(l/H’)-,  

t = s+ ... as s++00, 

t = +cs3/2+...  as s+O*.  

It may be verified that the exact solution of (59a) which satisfies conditions (60) is given 
by two branches (see figure 7a)  

The solution given by (61)  exists only when H’ > 0. Integration of (59b) gives 
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FIGURE 7. (a) The phase-plane solution t (s) and (b)  the similarity functionflg), for the case 
m = 113, k = 113. 
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r 
4 

r r 
A A u - 2k0 C6Rc(r-rb(x))2vb(x) x 

w - 2C6Rc(v-vb(x)) rb(x) x 

u - koHx2r 

X R, = 112 f C3 

FIGURE 8. The flow around the nose of a stagnation bubble surface. 

where C is a constant of integration. From the definitions of s and t and (62) the 
function A[)  can be described by the parametric representation 

The functionnx) is described in figure 7(b). It is a monotonically increasing function 
that changes like 0(( - [)-’) as 5- - co and O([) as --f + co. The function fig) also 

(64) 
satisfies the relation 

From equations (57) and (63),  it is found that as 5- + co(y ++ 00 or x+O+ and 
II. + Of) 

3 1 2  - - 1 1 2  f [f - 1  = o .  

The matching of (65) and (12) shows that for the case m = k = 1/3 we have a = 1/2, 
d,,(x) = (H”I2/C3) x, dl(x) = (H’112)-112/(C312 x1lZ) and (13a) is automatically satisfied 
as x+ O+. From equations (57), (63) and (64), we can also resolve the local behaviour 
of $ as both (x,y)+O and $ 2  0 :  

$ = C6y y--n + ..., y = r2/2. ( “c;,’)’ 
The local solution (66) shows that the bubble separated at x = 0 has the local shape of 
a paraboloid as x --f O+ : 

r b ( X )  = [ ( 2 2 / ~ ’ / ~ 3 )  x ~ 1 i 2  + . . . (67) 
with a radius of curvature R, = H’lI2/C3. The constant C 3  represents a scale parameter 
related to the radius of curvature of the bubble nose and cannot be determined from 
the local analysis. This local solution describes a swirling flow around a stagnation 
surface (see figure 8). As x+O- 
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= ~ ' ~ 2 +  2c3 r 2 (-x)+ ..., v = koH'x2r+ ... . (68) 

The solution describes a wake-like deceleration of the axial velocity to stagnation that 
is a quadratic function of the distance from the stagnation point and with specific 
curvature H'. The solid-body rotation of the swirl component decays as the stagnation 
point is approached. At x = 0 (stagnation point station) 

w = 3C6r4 4 + . . ., v = 2k0 C6r5 + . . . . (69) 

The axial velocity changes its wake-like shape from quadratic in r to quartic in r .  The 
circumferential velocity deviates strongly from solid-body rotation to a much slower 
swirl that is changing as the fifth power of the radial distance from the centreline. 
Around the bubble, r = rb(x) given by (67), the velocity components are 

(70) 1 w = 2 C 3 H ' 1 ' 2 ( r - r b ( ~ ) ) r b ( ~ ) ~ +  ..., 
z, = 2k0 C3 H'li2(r - rb(x))'rb(x) x + . . . . 

The flow along the bubble surface is stagnant. The axial velocity increases linearly and 
the circumferential velocity increases quadratically as the radial distance from the 
bubble surface is increased. 

4.7. Summary of similarity solutions 

The six matching processes described above, $94.14.6, of a similarity solution (14) 
with the asymptotic behaviour of the approaching flow (equation (7)) and with that of 
the flow around the separated bubble (equation (12)) results in two distinct local 
solutions to describe the nature of an axisymmetric swirling flow around a stagnation 
point. The first solution describes a swirling flow that expands around a pressure- 
varying bubble surface (see (38)-(43) and figure 6). The second solution describes a 
swirling flow around a stagnation surface ((63)-(70) and figure 8). In both solutions, the 
bubble nose has a paraboloid shape and they are given in terms of a constant scale 
parameter that is related with the local radius of curvature of the bubble nose. Also, 
both solutions exist only when H' > 0 or according to (9) when at some inlet station 
xo < 0 ahead of the stagnation point 

The meaning of the condition H' > 0 is that the vortex flow is more receptive to 
breakdown when the stagnation pressure at the vortex centre is smaller than at its 
surroundings. 

It is also easy to see from (1 1) that the necessary condition H' > 0 means that as 
r+O 

which is exactly the Brown & Lopez (1990) criterion for the occurrence of vortex 
breakdown. It should be pointed out, however, that in this work, this criterion has been 
found directly from the analytical solutions for the similarity term (14). It is also 
interesting to note that for the two solutions, the azimuthal vorticity near the 
stagnation point is negative and given by 

~ ( x  = 0,  r+0) = -rH'+... < 0 
(see also (10)). 

(73) 
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5. Flow around the stagnation point - a non-similarity solution 
In the intermediate region, around the bubble nose x - 0, we may consider the 

assumption of an analytical continuation of the functions H($) and I($) for $ < 0 
inside the bubble (see (2)). Under this specific assumption, we may describe the local 
solution around x = 0 of (2c) by the asymptotic series (a non-similarity solution) 

$(x, y )  - A,  x + B, y + A,  x2 + B, xy + C, y 2  + A ,  x3 + B, x2y+ C, xy2 + D,y3 + . . . 
as (x,y)+O. (74) 

The requirement that $z(x, 0) = 0 for every x (no radial velocity along the centreline) 
results in A,  = A,  = A, = . . . 0. The assumption that $JO,O) = 0, gives B, = 0. The 
substitution of (74) into (2c), together with (8a) and (8b), results as (x,y)+O in a 
leading-order relation 

Let C, = +7H’ and B, = (1 - 7) H‘. Then, as (x, y )  + 0, we find 

2C, + B, = H’. (75) 

$ = ~ ~ H ’ ~ y 2 + B 2 ~ ~ + ( 1 - ~ ) H ’ ~ 2 y + C 3 ~ ~ 2 + D 3 ~ 3 +  ... . (76) 

In the general case, where 7 =l= 0 and B, =I= 0, the local flow around the stagnation point 
is described to the leading order by two parameters, 7H‘ = aw/ayl<,,,,, and 
B, = aw/axl<,,,,,,, that are related to the derivatives of the axial velocity w at the 
stagnation point (x = y = 0). 

Assuming also a wake-like deceleration of the axial velocity ahead of the stagnation 
point, as x + 0-, we find from 

w = $, = 7H‘y+B,x+ ..., v = k,B,xr+7k,,H’r3/4+ ... (77) 
that B, < 0 and 7H’ 3 0. Therefore, (- B,)/(7H’) > 0 and $ = 0 along the y = 0 axis 
and along the separated bubble with a paraboloid nose 

x+ ... . 

At the stagnation point x = 0 

w = k7H’ r2 + . . ., v = $7k, H’r3 + . . . . (79) 

Around the separated bubble r = rb(x),  

w = ( - B , ) x + 7 H ’ ( r - r b ( x ) ) r b ( x ) +  ..., v = 2k,(-B,)(r-r,(x))x+ ... . (80) 

Equations (80) describe in the general case a swirling flow around a pressure-varying 
surface (78). However, as was indicated in the Introduction, it can be seen that inside 
the bubble where 0 < r < rb(x) the analytical continuation assumption results in the 
solution (80) which predicts swirl velocities that are opposite to those outside the 
bubble. It seems that this result does not properly represent the physical observation 
inside the bubble (see the experiments of Faler & Leibovich 1978 and Uchida et al. 
1985). It is also clear that when 7 = 1, asymptotic solution (76) becomes, for $ 3  0, the 
asymptotic solution (39) of a swirling flow around a pressure-varying surface with a 
paraboloid nose, where (- B,) = (H’/2)l12 C. On the other hand, when 7 = 0, B, = 0, 
C, = -2H‘l‘’ C3 and D, = C6 solution (76) becomes, for $ 3 0, the asymptotic 
solution (66) of a swirling flow around a stagnation bubble surface. As indicated in §3, 
solution (76) describes negative azimuthal vorticity 7 around the stagnation point only 
when H‘ > 0 and so a separation bubble exists only when 7 3 0. 
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6. Comparison with experimental data 
The local solutions described above are compared in this section with the available 

detailed experimental data of Faler & Leibovich (1978) and Uchida et al. (1985) on 
axisymmetric vortex breakdown. In both cases, the data given for cross-sections ahead 
of breakdown and along the vortex centreline provide all the information needed to 
estimate the parameter k, and H’ (given by (5) and (9)). 

From the experimental data of Faler & Leibovich (1978), we can estimate at an 
upstream cross-section x, = - 14.6 mm, ahead of the stagnation point, that 
c,(xo) = (12.2 f 0.4) cm s-’, cz(xo) = (+ 20 f 10) cm-l s-l, b,(x,) = (30 f 3) s-l and 
ci(x,) = (- 15 f 5) cm-l s-l (see figure 9). From these we find k,  = (2.4 & 0.3) cm-l, 
H‘ = (180f 30) cm-l s-l. Similar estimations for k,  and H’ may be found at other 
cross-sections x = - 6.6 mm, x = -4.0 mm and x = - 3.0 mm ahead of the breakdown 
point (see Faler & Leibovich 1978). This demonstrates that both parameters k,  and H’ 
are constant and positive along the vortex centreline, as is predicted by the present 
axisymmetric and inviscid analysis. Of specific interest is comparing the wake-like 
shape of the flow at a cross-section x = - 1 .O mm, just ahead of the stagnation point. 
We find that c,(x = - 1 .O mm) = (85 i- 10) cm-l s-l (figure 9) which correlates nicely 
with c p  = H‘/2 + . . . predicted by (41) of the pressure-varying bubble solution or by the 
case 7 z 1 in (76)-(80). This solution also predicts a linear deceleration of the axial 
velocity along the centreline as a function of the axial distance x from the stagnation 
point (see (41)) as is also shown in figure 9 for the data taken from figure 6 of Faler 
& Leibovich (1978). The predictions of the other solution, describing a stagnation 
surface (see (68)) do not correlate with the behaviour shown in Faler & Leibovich 
(1978) (see figure 9). 

Using the experimental data of Uchida et al. (1985, figures 8 and 12), we can 
estimate at an inlet cross-section x, = -40 mm, ahead of the stagnation point, that 
c,(x,) = (2.5f0.1) W,, cz(xo) = (-lO+l) Wm/R2,  b,(x,) = (8.5f0.4) W J R  and 
ci(xo) = ( - 6 f 2) W,/RZ (see figure 10). Here W, is a reference speed and R is the tube 
radius. From these we find k,  = (3.4+0.3)/R and H’ = (35f8) W,/R2. Similar 
estimations for k,  and H’ may also be found at other cross-sections, x = -20 mm, 
x = - 10 mm and x = -4  mm ahead of the breakdown point (see Uchida et al. 1985). 
Again, the experimental data demonstrate that both parameters k,  and H‘ are constant 
and positive along the vortex centreline, as is predicted by the present analysis. It is also 
interesting to analyse the wake-like shape of the axial velocity at the stagnation point 
station x = 0. We find that c,(x = 0) = (16 f 2) Wm/Rz which correlates with c2 = H‘/2 
predicted by (41) and (42) or with the case 7 M 1 in (76)-(80). It is also clear from the 
experimental data that the circumferential velocity deviates from solid-body rotation 
near the centre to a rotation that depends on r3 as given by (42). The linear deceleration 
of the axial velocity near the stagnation point given by (41) seems to fit the 
experimental data of Uchida et al. (1985) better than that described by (68) (see figure 
10). We may conclude that in the nose region of the axisymmetric breakdown, the 
pressure-varying bubble solution described by (39)-(43) shows good agreement with 
the experimental data of both Faler & Leibovich (1978) and Uchida et al. (1985). 

The experimental data also show that, in general, at inlet cross-sections far ahead of 
the stagnation point, c;(x,) is small and may be neglected in the calculation of H’ by 
(9). In such cases, the necessary condition (71) for the existence of the two similarity 
solutions takes the form 

There is a lower limit for the angular velocity at the inlet xo < 0 for a stagnation point 

b,(x,) > [c,(x,> (- c2(x,>)11’2. (81) 
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FIGURE 9. Comparison of the present solutions with the experimental data 
of Faler & Leibovich (1978). 

to exist along the vortex centreline. In the case of an inlet flow described by the 
Q-vortex (Leibovich 1984) 

(82) 

we find that b,(x,) = KP, co(xo) = W,+ W, and -c2(x,) = PW,. With the definitions 
q G KP1/'/ W, and 6 = W,/ W, one concludes that axisymmetric vortex breakdown may 
exist only if 

(83) 

A stagnation point cannot develop in a Q-vortex flow with relatively low swirl where 

w = W, + W, e-@, u = K(I - e-prz>/r 

q > (1 + 1/6)1 '2 .  
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0 < q < (1 + 1/6)'''. Following Leibovich (1984), figure 11 describes this lower-limit 
line in a q us. 1/6 parameter space. Also shown are the critical line according to 
Benjamin's (1962) theory, the line for neutral stability of the columnar Q-vortex, 
q z 1.59, according to Lessen et al.'s (1974) analysis, and (4,s) values that were fitted 
by Garg & Leibovich (1979) to experimental inlet flows in pipes that experienced 
breakdown. It can be seen from figure 11 that all the approach flows in these 
experiments are supercritical ( N  > l), stable or marginally stable (according to Lessen 
et al. 1974) (q  > 1.59) and satisfy the necessary condition H' > 0. 
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7. Conclusions 
The structure of an axisymmetric swirling flow around a vortex breakdown point 

can be analysed by asymptotic methods. The analysis uses a transformation from the 
classical Squire-Long equation for the stream function $(x,y)  to a free boundary 
problem for the solution of y (x ,  y?) for y? 2 0 (outside the bubble). With this approach, 
we find that there is no need to specify or analyse the nature of the flow inside the 
bubble. Asymptotic expansions are constructed to describe the approaching swirling 
flow ahead of the bubble, around the bubble nose and around the separated bubble. 
The matching processes between those expansions result in two possible solutions. The 
first solution describes a constant-pressure bubble surface, over which the flow is 
stagnant. The second solution represents a swirling flow around a pressure-varying 
bubble surface, where the flow expands along the bubble nose. In both solutions, the 
bubble nose has a parabolic shape, and both exist only when H' > 0 (where H' is the 
derivative at the vortex centre of the total head H with the stream function @, and can 
be determined from the inlet flow conditions). This result is shown to be equivalent to 
Brown & Lopez's (1990) criterion for vortex breakdown. It means that the vortex is 
more receptive to breakdown when the stagnation pressure at the vortex centre is 
smaller than at its surroundings. Good agreement is found in the region around the 
stagnation point between the pressure-varying bubble solution and available detailed 
experimental data for the axisymmetric vortex breakdown. 
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